Рассмотрим представление о Боге. Мы не знаем, как оно возникло в мимофонде. Возможно, оно возникало многократно путем независимых «мутаций». Во всяком случае это очень старая идея. Как она реплицируется? С помощью устного и письменного слова, подкрепляемого великой музыкой и изобразительным искусством. Почему эта идея обладает такой высокой выживаемостью? Напомним, что в данном случае «выживаемость» означает не выживание гена в генофонде, а выживание мима в мимофонде. На самом деле вопрос состоит в следующем: в чем та «особость» идеи о Боге, которая придает ей такую стабильность и способность проникать в культурную среду? Выживаемость хорошего мима, входящего в мимофонд, обусловливается его большой психологической привлекательностью. Идея Бога дает на первый взгляд приемлемый ответ на глубокие и волнующие вопросы о смысле существования. Она позволяет надеяться, что несправедливость на этом свете может быть вознаграждена на том свете. «Всегда протянутые руки», готовые поддержать нас в минуты нашей слабости, которые, подобно плацебо, отнюдь не теряют своей действенности, хотя и существуют лишь в нашем воображении. Вот некоторые из причин, по которым идея Бога с такой готовностью копируется последовательными поколениями индивидуальных мозгов. Бог существует, пусть лишь в форме мима с высокой выживаемостью или инфекционностью, в среде, создаваемой человеческой культурой.
Darwin singled out the eye as posing a particularly challenging problem: 'To suppose that the eye with all its inimitable contrivances for adjusting the focus to different distances, for admitting different amounts of light, and for the correction of spherical and chromatic aberration, could have been formed by natural selection, seems, I freely confess, absurd in the highest degree.' Creationists gleefully quote this sentence again and again. Needless to say, they never quote what follows. Darwin's fulsomely free confession turned out to be a rhetorical device. He was drawing his opponents towards him so that his punch, when it came, struck the harder. The punch, of course, was Darwin's effortless explanation of exactly how the eye evolved by gradual degrees. Darwin may not have used the phrase 'irreducible complexity', or 'the smooth gradient up Mount Improbable', but he clearly understood the principle of both. 'What is the use of half an eye?' and 'What is the use of half a wing?' are both instances of the argument from 'irreducible complexity'. A functioning unit is said to be irreducibly complex if the removal of one of its parts causes the whole to cease functioning. This has been assumed to be self-evident for both eyes and wings. But as soon as we give these assumptions a moment's thought, we immediately see the fallacy. A cataract patient with the lens of her eye surgically removed can't see clear images without glasses, but can see enough not to bump into a tree or fall over a cliff. Half a wing is indeed not as good as a whole wing, but it is certainly better than no wing at all. Half a wing could save your life by easing your fall from a tree of a certain height. And 51 per cent of a wing could save you if you fall from a slightly taller tree. Whatever fraction of a wing you have, there is a fall from which it will save your life where a slightly smaller winglet would not. The thought experiment of trees of different height, from which one might fall, is just one way to see, in theory, that there must be a smooth gradient of advantage all the way from 1 per cent of a wing to 100 per cent. The forests are replete with gliding or parachuting animals illustrating, in practice, every step of the way up that particular slope of Mount Improbable. By analogy with the trees of different height, it is easy to imagine situations in which half an eye would save the life of an animal where 49 per cent of an eye would not. Smooth gradients are provided by variations in lighting conditions, variations in the distance at which you catch sight of your prey—or your predators. And, as with wings and flight surfaces, plausible intermediates are not only easy to imagine: they are abundant all around the animal kingdom. A flatworm has an eye that, by any sensible measure, is less than half a human eye. Nautilus (and perhaps its extinct ammonite cousins who dominated Paleozoic and Mesozoic seas) has an eye that is intermediate in quality between flatworm and human. Unlike the flatworm eye, which can detect light and shade but see no image, the Nautilus 'pinhole camera' eye makes a real image; but it is a blurred and dim image compared to ours. It would be spurious precision to put numbers on the improvement, but nobody could sanely deny that these invertebrate eyes, and many others, are all better than no eye at all, and all lie on a continuous and shallow slope up Mount Improbable, with our eyes near a peak—not the highest peak but a high one.
We have looked at some of the things that a female might do if she has been deserted by her mate. But these all have the air of making the best of a bad job. Is there anything a female can do to reduce the extent to which her mate exploits her in the first place? She has a strong card in her hand. She can refuse to copulate. She is in demand, in a seller's market. This is because she brings the dowry of a large, nutritious egg. A male who successfully copulates gains a valuable food reserve for his offspring. The female is potentially in a position to drive a hard bargain before she copulates. Once she has copulated she has played her ace — her egg has been committed to the male. It is all very well to talk about driving hard bargains, but we know very well it is not really like that. Is there any realistic way in which something equivalent to driving a hard bargain could evolve by natural selection? I shall consider two main possibilities, called the domestic-bliss strategy, the he-man strategy. The simplest version of the domestic-bliss strategy is this. The female looks the males over, and tries to spot signs of fidelity and domesticity in advance. There is bound to be variation in the population of males in their predisposition to be faithful husbands. If females could recognize such qualities in advance, they could benefit themselves by choosing males possessing them. One way for a female to do this is to play hard to get for a long time, to be coy. Any male who is not patient enough to wait until the female eventually consents to copulate is not likely to be a good bet as a faithful husband. By insisting on a long engagement period, a female weeds out casual suitors, and only finally copulates with a male who has proved his qualities of fidelity and perseverance in advance. Feminine coyness is in fact very common among animals, and so are prolonged courtship or engagement periods. As we have already seen, a long engagement can also benefit a male where there is a danger of his being duped into caring for another male's child.